BMC Evolutionary Biology

The latest research articles published by BMC Evolutionary Biology

URL

XML feed
http://www.biomedcentral.com/bmcevolbiol/

Last update

14 min 5 sec ago

July 24, 2014

06:00
Background: Early methods for estimating divergence times from gene sequence data relied on the assumption of a molecular clock. More sophisticated methods were created to model rate variation and used auto-correlation of rates, local clocks, or the so called ?uncorrelated relaxed clock? where substitution rates are assumed to be drawn from a parametric distribution. In the case of Bayesian inference methods the impact of the prior on branching times is not clearly understood, and if the amount of data is limited the posterior could be strongly influenced by the prior. Results: We develop a maximum likelihood method ? Physher ? that uses local or discrete clocks to estimate evolutionary rates and divergence times from heterochronous sequence data. Using two empirical data sets we show that our discrete clock estimates are similar to those obtained by other methods, and that Physher outperformed some methods in the estimation of the root age of an influenza virus data set. A simulation analysis suggests that Physher can outperform a Bayesian method when the real topology contains two long branches below the root node, even when evolution is strongly clock-like. Conclusions: These results suggest it is advisable to use a variety of methods to estimate evolutionary rates and divergence times from heterochronous sequence data. Physher and the associated data sets used here are available online at http://code.google.com/p/physher/.

July 23, 2014

18:00
Background: The oxidative stress theory of life-history tradeoffs states that oxidative stress caused by damaging free radicals directly underpins tradeoffs between reproduction and longevity by altering the allocation of energetic resources between these tasks. We test this theory by characterizing the effects of exogenous oxidative insult and its interaction with thermal stress and diet quality on a suite of life-history traits and correlations in Caenorhabditis elegans nematodes. We also quantify demographic aging rates and endogenous reactive oxygen species (ROS) levels in live animals. Results: Our findings indicate a tradeoff between investment in reproduction and antioxidant defense (somatic maintenance) consistent with theoretical predictions, but correlations between standard life-history traits yield little evidence that oxidative stress generates strict tradeoffs. Increasing oxidative insult, however, shows a strong tendency to uncouple positive phenotypic correlations and, in particular, to reduce the correlation between reproduction and lifespan. We also found that mild oxidative insult results in lower levels of endogenous ROS accompanied by hormetic changes in lifespan, demographic aging, and reproduction that disappear in combined-stress treatments--consistent with the oxidative stress theory of aging. Conclusions: Our findings demonstrate that oxidative stress is a direct contributor to life-history trait variation and that traditional tradeoffs are not necessary to invoke oxidative stress as a mediator of relationships between life-history traits, supporting previous calls for revisions to theory.
06:00
Background: The polyadenylation of RNA is critical for gene functioning, but the conserved sequence motifs (often called signal or signature motifs), motif locations and abundances, and base composition patterns around mRNA polyadenylation [poly(A)] sites are still uncharacterized in most species. The evolutionary tendency for poly(A) site selection is still largely unknown. Results: We analyzed the poly(A) site regions of 31 species or phyla. Different groups of species showed different poly(A) signal motifs: UUACUU at the poly(A) site in the parasite Trypanosoma cruzi; UGUAAC (approximately 13 bases upstream of the site) in the alga Chlamydomonas reinhardtii; UGUUUG (or UGUUUGUU) at mainly the fourth base downstream of the poly(A) site in the parasite Blastocystis hominis; and AAUAAA at approximately 16 bases and approximately 19 bases upstream of the poly(A) site in animals and plants, respectively. Polyadenylation signal motifs are usually several hundred times more abundant around poly(A) sites than in whole genomes. These predominant motifs usually had very specific locations, whether upstream of, at, or downstream of poly(A) sites, depending on the species or phylum. The poly(A) site was usually an adenosine (A) in all analyzed species except for B. hominis, and there was weak A predominance in C. reinhardtii. Fungi, animals, plants, and the protist Phytophthora infestans shared a general base abundance pattern (or base composition pattern) of ?U-rich?A-rich?U-rich?Poly(A) site?U-rich regions?, or U-A-U-A-U for short, with some variation for each kingdom or subkingdom. Conclusion: This study identified the poly(A) signal motifs, motif locations, and base composition patterns around mRNA poly(A) sites in protists, fungi, plants, and animals and provided insight into poly(A) site evolution.

July 18, 2014

18:00
Background: Salinity plays an important role in shaping coastal marine communities. Near-future climate predictions indicate that salinity will decrease in many shallow coastal areas due to increased precipitation; however, few studies have addressed this issue. The ability of ecosystems to cope with future changes will depend on species' capacities to acclimatise or adapt to new environmental conditions. Here, we investigated the effects of a strong salinity gradient (the Baltic Sea system - Baltic, Kattegat, Skagerrak) on plasticity and adaptations in the euryhaline barnacle Balanus improvisus. We used a common-garden approach, where multiple batches of newly settled barnacles from each of three different geographical areas along the Skagerrak-Baltic salinity gradient were exposed to corresponding native salinities (6, 15 and 30 PSU), and phenotypic traits including mortality, growth, shell strength, condition index and reproductive maturity were recorded. Results: We found that B. improvisus was highly euryhaline, but had highest growth and reproductive maturity at intermediate salinities. We also found that low salinity had negative effects on other fitness-related traits including initial growth and shell strength, although mortality was also lowest in low salinity. Overall, differences between populations in most measured traits were weak, indicating little local adaptation to salinity. Nonetheless, we observed some population-specific responses - notably that populations from high salinity grew stronger shells in their native salinity compared to the other populations, possibly indicating adaptation to differences in local predation pressure. Conclusions: Our study shows that B. improvisus is an example of a true brackish-water species, and that plastic responses are more likely than evolutionary tracking in coping with future changes in coastal salinity.

July 15, 2014

19:00
Background: The closely related and extinct Dodo (Raphus cucullatus) and Rodrigues Solitaire (Pezophaps solitaria), both in the subfamily Raphinae, are members of a clade of morphologically very diverse pigeons. Genetic analyses have revealed that the Nicobar Pigeon (Caloenas nicobarica) is the closest living relative of these birds, thereby highlighting their ancestors’ remarkable migration and morphological evolution. The Spotted Green Pigeon (Caloenas maculata) was described in 1783 and showed some similarities to the Nicobar Pigeon. Soon however the taxon fell into obscurity, as it was regarded as simply an abnormal form of the Nicobar Pigeon. The relationship between both taxa has occasionally been questioned, leading some ornithologists to suggest that the two may in fact be different taxa. Today only one of the original two specimens survives and nothing is known about the origin of the taxon. Due to its potential close relationship, the Spotted Green Pigeon may hold clues to the historical migration, isolation and morphological evolution of the Dodo and its kindred. Results: We use ancient DNA methodologies to investigate the phylogeny and authenticity of the Spotted Green Pigeon. A novel extraction method with the ability to retain and purify heavily fragmented DNA is used to investigate two feathers from the sole surviving specimen. Maximum Likelihood phylogenetic analyses reveal that the Spotted Green Pigeon is a unique lineage and together with the Nicobar Pigeon, is basal to the Dodo and Rodrigues Solitaire. Conclusions: The distance observed for the Spotted Green Pigeon and Nicobar Pigeon is larger than that observed within other Pigeon species, indicating that the Spotted Green pigeon is a unique taxon, thereby also indicating it is a genuine addition to the list of extinct species. The phylogenetic placement of the Spotted Green Pigeon indicates that the ancestors of both Caloenas and therefore Raphinae displayed and shared the following traits: ability of flight, semi-terrestrial habits and an affinity towards islands. This set of traits supports the stepping stone hypothesis, which states that the Raphinae got to their respective localities by island hopping from India or Southeast Asia.

July 10, 2014

18:00
Background: The moss Physcomitrella patens (Hedw.) Bruch & Schimp. is an important experimental model system for evolutionary-developmental studies. In order to shed light on the evolutionary history of Physcomitrella and related species within the Funariaceae, we analyzed the natural genetic diversity of the Physcomitrium-Physcomitrella species complex. Results: Molecular analysis of the nuclear single copy gene BRK1 reveals that three Physcomitrium species feature larger genome sizes than Physcomitrella patens and encode two expressed BRK1 homeologs (polyploidization-derived paralogs), indicating that they may be allopolyploid hybrids. Phylogenetic analyses of BRK1 as well as microsatellite simple sequence repeat (SSR) data confirm a polyphyletic origin for three Physcomitrella lineages. Differences in the conservation of mitochondrial editing sites further support hybridization and cryptic speciation within the Physcomitrium-Physcomitrella species complex. Conclusions: We propose a revised classification of the previously described four subspecies of Physcomitrella patens into three distinct species, namely Physcomitrella patens, Physcomitrella readeri and Physcomitrella magdalenae. We argue that secondary reduction of sporophyte complexity in these species is due to the establishment of an ecological niche, namely spores resting in mud and possible spore dispersal by migratory birds. Besides the Physcomitrium-Physcomitrella species complex, the Funariaceae are host to their type species, Funaria hygrometrica, featuring a sporophyte morphology which is more complex. Their considerable developmental variation among closely related lineages and remarkable trait evolution render the Funariaceae an interesting group for evolutionary and genetic research.
18:00
Background: The maintenance of chromosomal integrity is an essential task of every living organism and cellular repair mechanisms exist to guard against insults to DNA. Given the importance of this process, it is expected that DNA repair proteins would be evolutionarily conserved, exhibiting very minimal sequence change over time. However, BRCA1, an essential gene involved in DNA repair, has been reported to be evolving rapidly despite the fact that many protein-altering mutations within this gene convey a significantly elevated risk for breast and ovarian cancers. Results: To obtain a deeper understanding of the evolutionary trajectory of BRCA1, we analyzed complete BRCA1 gene sequences from 23 primate species. We show that specific amino acid sites have experienced repeated selection for amino acid replacement over primate evolution. This selection has been focused specifically on humans and our closest living relatives, chimpanzees (Pan troglodytes) and bonobos (Pan paniscus). After examining BRCA1 polymorphisms in 7 bonobo, 44 chimpanzee, and 44 rhesus macaque (Macaca mulatta) individuals, we find considerable variation within each of these species and evidence for recent selection in chimpanzee populations. Finally, we also sequenced and analyzed BRCA2 from 24 primate species and find that this gene has also evolved under positive selection. Conclusions: While mutations leading to truncated forms of BRCA1 are clearly linked to cancer phenotypes in humans, there is also an underlying selective pressure in favor of amino acid-altering substitutions in this gene. A hypothesis where viruses are the drivers of this natural selection is discussed.

July 8, 2014

18:00
Background: Hybrid zones formed by the secondary contact of divergent lineages represent natural laboratories for studying the genetic basis of speciation. Here we tested for patterns of differential introgression among three X-linked and 11 autosomal regions to identify candidate loci related to either reproductive isolation or adaptive introgression across a hybrid zone between two Chinese mainland subspecies of the intermediate horseshoe bat Rhinolophus affinis: R. a. himalayanus and R. a. macrurus. Results: Our results support the previous suggestion that macrurus formed when a third subspecies (R. a. hainanus) recolonized the mainland from Hainan Island, and that himalayanus is the ancestral taxon. However, this overall evolutionary history was not reflected in all loci examined, with considerable locus-wise heterogeneity seen in gene tree topologies, levels of polymorphism, genetic differentiation and rates of introgression. Coalescent simulations suggested levels of lineage mixing seen at some nuclear loci might result from incomplete lineage sorting. Isolation with migration models supported evidence of gene flow across the hybrid zone at one intronic marker of the hearing gene Prestin. Conclusions: We suggest that phylogenetic discordance with respect to the species tree seen here is likely to arise via a combination of incomplete lineage sorting and a low incidence of introgression although we cannot rule out other explanations such as selection and recombination. Two X-linked loci and one autosomal locus were identified as candidate regions related to reproductive isolation across the hybrid zone. Our work highlights the importance of including multiple genomic regions in characterizing patterns of divergence and gene flow across a hybrid zone.
18:00
Background: Skipper butterflies (Hesperiidae) are a relatively well-studied family of Lepidoptera. However, a combination of DNA barcodes, morphology, and natural history data has revealed several cryptic species complexes within them. Here, we investigate three DNA barcode lineages of what has been identified as Urbanus belli (Hesperiidae, Eudaminae) in Area de Conservacion Guanacaste (ACG), northwestern Costa Rica. Results: Although no morphological traits appear to distinguish among the three, congruent nuclear and mitochondrial lineage patterns show that "Urbanus belli" in ACG is a complex of three sympatric species. A single strain of Wolbachia present in two of the three cryptic species indicates that Urbanus segnestami Burns (formerly Urbanus belliDHJ01), Urbanus bernikerni Burns (formerly Urbanus belliDHJ02), and Urbanus ehakernae Burns (formerly Urbanus belliDHJ03) may be biologically separated by Wolbachia, as well as by their genetics. Use of parallel sequencing through 454-pyrosequencing improved the utility of ITS2 as a phylogenetic marker and permitted examination of the intra- and interlineage relationships of ITS2 variants within the species complex. Interlineage, intralineage and intragenomic compensatory base pair changes were discovered in the secondary structure of ITS2. Conclusion: These findings corroborate the existence of three cryptic species. Our confirmation of a novel cryptic species complex, initially suggested by DNA barcode lineages, argues for using a multi-marker approach coupled with next-generation sequencing for exploration of other suspected species complexes.

July 7, 2014

18:00
Background: Recent molecular hypotheses suggest that some traditional suprageneric taxa of Characiformes require revision, as they may not constitute monophyletic groups. This is the case for the Bryconidae. Various studies have proposed that this family (considered a subfamily by some authors) may be composed of different genera. However, until now, no phylogenetic study of all putative genera has been conducted. Results: In the present study, we analyzed 27 species (46 specimens) of all currently recognized genera of the Bryconidae (ingroup) and 208 species representing all other families and most genera of the Characiformes (outgroup). Five genes were sequenced: 16SrRNA, Cytochrome b, recombination activating gene 1 and 2 and myosin heavy chain 6 cardiac muscle. The final matrix contained 4699 bp and was analyzed by maximum likelihood, maximum parsimony and Bayesian analyses. The results show that the Bryconidae, composed of Brycon, Chilobrycon, Henochilus and Salminus, is monophyletic and is the sister group of Gasteropelecidae + Triportheidae. However, the genus Brycon is polyphyletic. Fossil studies suggest that the family originated approximately 47 million years ago (Ma) and that one of the two main lineages persisted only in trans-Andean rivers, including Central American rivers, suggesting a much older origin of Mesoamerican ichthyofauna than previously accepted. Conclusion: Bryconidae is composed by five main clades, including the genera Brycon, Chilobrycon, Henochilus and Salminus, but a taxonomic review of these groups is needed. Our results point to a possible ancient invasion of Central America, dating about 20.3 ± 5.0 Ma (late Oligocene - early Miocene), to explain the occurrence of Brycon in Central America.

July 6, 2014

18:00
Background: Camellia is an economically and phylogenetically important genus in the family Theaceae. Owing to numerous hybridization and polyploidization, it is taxonomically and phylogenetically ranked as one of the most challengingly difficult taxa in plants. Sequence comparisons of chloroplast (cp) genomes are of great interest to provide a robust evidence for taxonomic studies, species identification and understanding mechanisms that underlie the evolution of the Camellia species. Results: The eight complete cp genomes and five draft cp genome sequences of Camellia species were determined using Illumina sequencing technology via a combined strategy of de novo and reference-guided assembly. The Camellia cp genomes exhibited typical circular structure that was rather conserved in genomic structure and the synteny of gene order. Differences of repeat sequences, simple sequence repeats, indels and substitutions were further examined among five complete cp genomes, representing a wide phylogenetic diversity in the genus. A total of fifteen molecular markers were identified with more than 1.5% sequence divergence that may be useful for further phylogenetic analysis and species identification of Camellia. Our results showed that, rather than functional constrains, it is the regional constraints that strongly affect sequence evolution of the cp genomes. In a substantial improvement over prior studies, evolutionary relationships of the section Thea were determined on basis of phylogenomic analyses of cp genome sequences. Conclusions: Despite a high degree of conservation between the Camellia cp genomes, sequence variation among species could still be detected, representing a wide phylogenetic diversity in the genus. Furthermore, phylogenomic analysis was conducted using 18 complete cp genomes and 5 draft cp genome sequences of Camellia species. Our results support Chang’s taxonomical treatment that C. pubicosta may be classified into sect. Thea, and indicate that taxonomical value of the number of ovaries should be reconsidered when classifying the Camellia species. The availability of these cp genomes provides valuable genetic information for accurately identifying species, clarifying taxonomy and reconstructing the phylogeny of the genus Camellia.

July 2, 2014

18:00
Background: To understand the processes that generate biodiversity, it is important to account for large-scale processes that affect the evolutionary history of groups of co-distributed populations of organisms. Such events predict temporally clustered divergences times, a pattern that can be estimated using genetic data from co-distributed species. I introduce a new approximate-Bayesian method for comparative phylogeographical model-choice that estimates the temporal distribution of divergences across taxa from multi-locus DNA sequence data. The model is an extension of that implemented in msBayes. Results: By reparameterizing the model, introducing more flexible priors on demographic and divergence-time parameters, and implementing a non-parametric Dirichlet-process prior over divergence models, I improved the robustness, accuracy, and power of the method for estimating shared evolutionary history across taxa. Conclusions: The results demonstrate the improved performance of the new method is due to (1) more appropriate priors on divergence-time and demographic parameters that avoid prohibitively small marginal likelihoods for models with more divergence events, and (2) the Dirichlet-process providing a flexible prior on divergence histories that does not strongly disfavor models with intermediate numbers of divergence events. The new method yields more robust estimates of posterior uncertainty, and thus greatly reduces the tendency of the model to incorrectly estimate models of shared evolutionary history with strong support.
18:00
Background: The relationship between allopolyploidy and plant virus resistance is poorly understood. To determine the relationship of plant evolutionary history and basal virus resistance, a panel of Nicotiana species from diverse geographic regions and ploidy levels was assessed for resistance to non-coevolved viruses from the genus Nepovirus, family Secoviridae. The heritability of resistance was tested in a panel of synthetic allopolyploids. Leaves of different positions on each inoculated plant were tested for virus presence and a subset of plants was re-inoculated and assessed for systemic recovery. Results: Depending on the host-virus combination, plants displayed immunity, susceptibility or intermediate levels of resistance. Synthetic allopolyploids showed an incompletely dominant resistance phenotype and manifested systemic recovery. Plant ploidy was weakly negatively correlated with virus resistance in Nicotiana species, but this trend did not hold when synthetic allopolyploids were taken into account. Furthermore, a relationship between resistance and geographical origin was observed. Conclusion: The gradients of resistance and virulence corresponded to a modified matching allele model of resistance. Intermediate resistance responses of allopolyploids corresponded with a model of multi-allelic additive resistance. The variable virus resistance of extant allopolyploids suggested that selection-based mechanisms surpass ploidy with respect to evolution of basal resistance to viruses.

June 29, 2014

18:00
Background: Sexual selection has initially been thought to occur exclusively at the precopulatory stage in terms of contests among males and female mate choice, but research over the last four decades revealed that it often continues after copulation through sperm competition and cryptic female choice. However, studying these postcopulatory processes remains challenging because they occur internally and therefore are often difficult to observe. In the transparent free-living flatworm Macrostomum lignano, a recently established transgenic line that expresses green fluorescent protein (GFP) in all cell types, including sperm, offers a unique opportunity to non-invasively visualise and quantify the sperm of a GFP-expressing donor inside the reproductive tract of wild-type recipients in vivo. We here test several aspects of the reproductive performance of the transgenic individuals and the accuracy of the techniques involved in assessing the GFP-expressing worms and their sperm. We then show the usefulness of these methods in a study on sperm displacement. Results: GFP-expressing worms do not differ from wild-type worms in terms of morphology, mating rate and reproductive success. In addition, we show that the GFP signal is reliably and unequivocally expressed by all GFP-expressing individuals observed under epifluorescence illumination. However, the intensity of the GFP signal emitted by sperm of GFP expressing donors can vary (which we show to be at least in part due to sperm ageing) and the GFP marker is inherited according to Mendel's laws in most, but not all, of the individuals. Nevertheless, we argue these two issues can be addressed with an appropriate experimental design. Finally, we demonstrate the value of the GFP-techniques by comparing the number of GFP-expressing sperm in a wild-type recipient before and after mating with a competing sperm donor, providing clear experimental evidence for sperm displacement in M. lignano. This result suggests that sperm donors can displace previously stored sperm and replace it with their own. Conclusion: The availability of the GFP-techniques in a transparent organism provide unique opportunities to visualise and quantify internal processes in the female reproductive tract after mating, which opens new avenues in the study of sexual selection.
18:00
Background: Heat stress transcription factors (Hsfs) regulate gene expression in response to heat and many other environmental stresses in plants. Understanding the adaptive evolution of Hsf genes in the grass family will provide potentially useful information for the genetic improvement of modern crops to handle increasing global temperatures. Results: In this work, we performed a genome-wide survey of Hsf genes in 5 grass species, including rice, maize, sorghum, Setaria, and Brachypodium, by describing their phylogenetic relationships, adaptive evolution, and expression patterns under abiotic stresses. The Hsf genes in grasses were divided into 24 orthologous gene clusters (OGCs) based on phylogeneitc relationship and synteny, suggesting that 24 Hsf genes were present in the ancestral grass genome. However, 9 duplication and 4 gene-loss events were identified in the tested genomes. A maximum-likelihood analysis revealed the effects of positive selection in the evolution of 11 OGCs and suggested that OGCs with duplicated or lost genes were more readily influenced by positive selection than other OGCs. Further investigation revealed that positive selection acted on only one of the duplicated genes in 8 of 9 paralogous pairs, suggesting that neofunctionalization contributed to the evolution of these duplicated pairs. We also investigated the expression patterns of rice and maize Hsf genes under heat, salt, drought, and cold stresses. The results revealed divergent expression patterns between the duplicated genes. Conclusions: This study demonstrates that neofunctionalization by changes in expression pattern and function following gene duplication has been an important factor in the maintenance and divergence of grass Hsf genes.

June 25, 2014

18:00
Background: The origin and colonisation history after the Quaternary ice ages remain largely unresolved for many plant lineages, mainly owing to a lack of fine-scale studies. Here, we present a molecular phylogeny and a phylogeographic analysis of Antirrhinum, an important model system in plant biology, in the Pyrenees range. Our goal was to reconstruct the evolutionary and colonisation history of four taxa endemic to this region (A. majus subsp. majus, A. majus. subsp. striatum, A. molle, and A. sempervirens) by using a dense sampling strategy, with a total of 452 individuals from 99 populations whose collective distribution spans nearly the entirety of the Pyrenees and adjacent mountains. Results: Phylogenetic and phylogeographic analyses of the sequences of two plastid (trnS-trnG and trnK-matK) regions revealed the following: (i) historical relationship between the Pyrenees and Iberia (but not with the Alps); (ii) the long persistence of populations in the Pyrenees, at least since the Late Pleistocene; (iii) three different colonisation histories for populations from the Western, Central, and Eastern Pyrenees; (iv) the deep phylogeographic separation of the eastern and western populations; and (v) the colonisation of southern France from the Eastern Pyrenees. Conclusions: The present study underlines the enormous influence of the glacial history of the mountain ranges on the current configuration of intra- and inter-specific genetic diversity in Antirrhinum, as well as the importance of periglacial areas for the survival of species during glacial periods of the Quaternary.

June 24, 2014

18:00
Background: The evolution of the coding exome is a major driving force of functional divergence both between species and between protein isoforms. Exons at different positions in the transcript or in different transcript isoforms may (1) mutate at different rates due to variations in DNA methylation level; and (2) serve distinct biological roles, and thus be differentially targeted by natural selection. Furthermore, intrinsic exonic features, such as exon length, may also affect the evolution of individual exons. Importantly, the evolutionary effects of these intrinsic/extrinsic features may differ significantly between animals and plants. Such inter-lineage differences, however, have not been systematically examined. Results: Here we examine how DNA methylation at CpG dinucleotides (CpG methylation), in the context of intrinsic exonic features (exon length and relative exon position in the transcript), influences the evolution of coding exons of Arabidopsis thaliana. We observed fairly different evolutionary patterns in A. thaliana as compared with those reported for animals. Firstly, the mutagenic effect of CpG methylation is the strongest for internal exons and the weakest for first exons despite the stringent selective constraints on the former group. Secondly, the mutagenic effect of CpG methylation increases significantly with length in first exons but not in the other two exon groups. Thirdly, CpG methylation level is correlated with evolutionary rates (d S, d N, and the d N/d S ratio) with markedly different patterns among the three exon groups. The correlations are generally positive, negative, and mixed for first, last, and internal exons, respectively. Fourthly, exon length is a CpG methylation-independent indicator of evolutionary rates, particularly for d N and the d N/d S ratio in last and internal exons. Finally, the evolutionary patterns of coding exons with regard to CpG methylation differ significantly between Arabidopsis species and mammals. Conclusions: Our results suggest that intrinsic features, including relative exonic position in the transcript and exon length, play an important role in the evolution of A. thaliana coding exons. Furthermore, CpG methylation is correlated with exonic evolutionary rates differentially between A. thaliana and animals, and may have served different biological roles in the two lineages.

June 22, 2014

18:00
Background: Animals fertilize thousands of angiosperm species whose floral-display sizes can significantly influence pollinator behavior and plant reproductive success. Many studies have measured the interactions among pollinator behavior, floral-display size, and plant reproductive success, but few studies have been able to separate the effects of pollinator behavior and post-pollination processes on angiosperm sexual reproduction. In this study, we utilized the highly self-incompatible pollinium-pollination system of Asclepias syriaca (Common Milkweed) to quantify how insect visitors influenced male reproductive success measured as pollen removal, female reproductive success measured as pollen deposition, and self-pollination rate. We also determined how floral-display size impacts both visitor behavior and self-pollination rate. Results: Four insect taxonomic orders visited A. syriaca: Coleoptera, Diptera, Hymenoptera, and Lepidoptera. We focused on three groups of visitor taxa within two orders (Hymenoptera and Lepidoptera) with sample sizes large enough for quantitative analysis: Apis mellifera (Western Honey Bee), Bombus spp. (bumble bees) and lepidopterans (butterflies and moths). Qualitatively, lepidopterans had the highest pollinator importance values, but the large variability in the lepidopteran data precluded meaningful interpretation of much of their behavior. The introduced A. mellifera was the most effective and most important diurnal pollinator with regard to both pollen removal and pollen deposition. However, when considering the self-incompatibility of A. syriaca, A. mellifera was not the most important pollinator because of its high self-pollination rate as compared to Bombus spp. Additionally, the rate of self-pollination increased more rapidly with the number of flowers per inflorescence in A. mellifera than in the native Bombus spp. Conclusions: Apis mellifera’s high rate of self-pollination may have significant negative effects on both male and female reproductive successes in A. syriaca, causing different selection on floral-display size than native pollinators.

June 20, 2014

18:00
Background: Lethal amanitas (Amanita section Phalloideae) are a group of wild, fatal mushrooms causing many poisoning cases worldwide. However, the diversity and evolutionary history of these lethal mushrooms remain poorly known due to the limited sampling and insufficient gene fragments employed for phylogenetic analyses. In this study, five gene loci (nrLSU, ITS, rpb2, ef1-alpha and beta-tubulin) with a widely geographic sampling from East and South Asia, Europe, North and Central America, South Africa and Australia were analysed with maximum-likelihood, maximum-parsimony and Bayesian inference methods. Biochemical analyses were also conducted with intention to detect amatoxins and phalloidin in 14 representative samples.Result: Lethal amanitas were robustly supported to be a monophyletic group after excluding five species that were provisionally defined as lethal amanitas based on morphological studies. In lethal amanitas, 28 phylogenetic species were recognised by integrating molecular phylogenetic analyses with morphological studies, and 14 of them represented putatively new species. The biochemical analyses indicated a single origin of cyclic peptide toxins (amatoxins and phalloidin) within Amanita and suggested that this kind of toxins seemed to be a synapomorphy of lethal amanitas. Molecular dating through BEAST and biogeographic analyses with LAGRANGE and RASP indicated that lethal amanitas most likely originated in the Palaeotropics with the present crown group dated around 64.92 Mya in the early Paleocene, and the East Asia-eastern North America or Eurasia-North America-Central America disjunct distribution patterns were primarily established during the middle Oligocene to Miocene. Conclusion: The cryptic diversity found in this study indicates that the species diversity of lethal amanitas is strongly underestimated under the current taxonomy. The intercontinental sister species or sister groups relationships among East Asia and eastern North America or Eurasia-North America-Central America within lethal amanitas are best explained by the diversification model of Palaeotropical origin, dispersal via the Bering Land Bridge, followed by regional vicariance speciation resulting from climate change during the middle Oligocene to the present. These findings indicate the importance of both dispersal and vicariance in shaping the intercontinental distributions of these ectomycorrhizal fungi.
18:00
Background: Selection pressure governs the relative mutability and the conservedness of a protein across the protein family. Biomolecules (DNA, RNA and proteins) continuously evolve under the effect of evolutionary pressure that arises as a consequence of the host parasite interaction. IPCS (Inositol phosphorylceramide synthase), SPL (Sphingosine-1-P lyase) and SPT (Serine palmitoyl transferase) represent three important enzymes involved in the sphingolipid metabolism of Leishmania. These enzymes are responsible for maintaining the viability and infectivity of the parasite and have been classified as druggable targets in the parasite metabolome. Results: The present work relates to the role of selection pressure deciding functional conservedness and divergence of the drug targets. IPCS and SPL protein families appear to diverge from the SPT family. The three protein families were largely under the influence of purifying selection and were moderately conserved baring two residues in the IPCS protein which were under the influence of positive selection. To further explore the selection pressure at the codon level, codon usage bias indices were calculated to analyze genes for their synonymous codon usage pattern. IPCS gene exhibited slightly lower codon bias as compared to SPL and SPT protein families. Conclusion: Evolutionary tracing of the proposed drug targets has been done with a viewpoint that the amino-acids lining the drug binding pocket should have a lower evolvability. Sites under positive selection (HIS20 and CYS30 of IPCS) should be avoided during devising strategies for inhibitor design.