NESCent, The National Evolutionary Synthesis Center, is a collaborative effort of Duke University, The University of North Carolina at Chapel Hill and North Carolina State University and is sponsored by the National Science Foundation.


XML feed

Last update

6 weeks 5 days ago

June 4, 2015

May 31, 2015

With consequences for disease severity, resistance or clearance of a pathogen infection by an individual can be enhanced by a previous exposure to that pathogen, occurring either within an individual or even in its parents. This form of immune memory, traditionally thought the province of the vertebrate adaptive immune response, can also arise from innate immune pathways of vertebrates and invertebrates, and through distinct pathways in plants and bacteria. Researchers studying this phenomenon rarely interact across taxonomic boundaries, however, and use a preponderance of disparate terms to describe this innate immune mediated memory, including immune memory, immune priming, trained immunity, and systemic acquired resistance. This catalysis meeting will facilitate a synthesis of disparate researchers to better understand commonalities among these different forms of innate immune memory and key consequences for disease. We will use this opportunity to produce a broad interest synthesis manuscript elaborating upon specific avenues by which an improved understanding of innate immune memory will inspire future research, with direct and indirect benefits for human health. First, better understanding of how vertebrate immune memory works in retaining specific memory stands to improve vaccine design and delivery. Second, the specificity of immune memory could be manipulated to leave harmful pests, vectors, and human parasites susceptible to pathogen mediated biocontrol, while improving the health of beneficial organisms such as agricultural plants, animals, and pollinators that ensure human food security. Our approach aims to identify model systems functionally analogous to human innate immune memory that maximize our flexibility to interrogate the genetics, constraints, and functional manipulations of innate immune memory. Finally, this synthesis will elucidate fundamental concepts underlying host-pathogen evolution and the limits of immunological plasticity.

May 21, 2015

In the last two decades, models from evolutionary biology have made important contributions to demographic research on human fertility change. Within this evolutionary framework, two distinct traditions have focused on different processes of adaptation and time scales of change: (1) behavioral ecological perspectives have focused on how individual fertility decisions are shaped by local ecological circumstances, while (2) cultural evolutionary approaches have emphasized the role of socially transmitted information and changing social norms in shaping fertility behavior. While each tradition has made independent progress, research that integrates these approaches is necessary to improve our understanding of real fertility behavior, which results from a feedback between individual fertility decisions and social change. This approach requires combined attention to immediate ecological determinants of fertility decisions as well as the long-term processes that shape costs and benefits in a given environment. This workshop will bring together an international team of evolutionary behavioral scientists with complementary methodological and theoretical expertise in anthropology, psychology, and demography to develop (a) a synthetic article which proposes how these approaches can be integrated methodologically and theoretically, (b) an empirical article which applies our new synthetic framework to the study of fertility change in a particular fieldsite, demonstrating how the new methodological approach will work in practice and what we can learn through employing it, and (c) a multi-site grant proposal (UK, US, Bangladesh, Ethiopia, Bolivia, Poland) aimed at integrating and empirically testing these diverse evolutionary models of human fertility change.

May 17, 2015

Human cultural diversity is expressed in myriad ways (from social and marital norms to languages and religious practices), but what factors shape this diversity? Dating back to Darwin, multiple disciplines have debated the degree to which cultural diversity patterns are influenced by different factors, including history, demographics, and ecology. Over recent years an emerging set of studies have showcased how phylogenetic comparative methods from evolutionary biology can help resolve these long-held debates and revolutionize the field of cultural evolution. Now the major barrier to advances lies in the location of necessary data, which are spread across multiple disparate sources in linguistics, biogeography and anthropology. To overcome this challenge we will create D-PLACE (a Database of Phylogenies of Languages for the study of Cultural Evolution), a publicly available and expandable web-portal that will map over 100 cultural features onto language phylogenies and link these to ecological and environmental variables, empowering a whole new line of investigation into the drivers of cultural change and patterns of cultural diversity. We will produce a paper to introduce D-PLACE and outline the many types of questions in comparative anthropology the database can answer. Finally, we will demonstrate the power of this new resource by using D-PLACE to examine two long-standing and fundamental questions from comparative anthropology: (i) What drives the diversity of incest taboos (i.e. how human societies regulate who can mate and marry)? (ii) Can we characterize recurrent “human niches”, or are societies just arbitrary bundles of cultural features?
Baker’s Law (hereafter BL) states that self-compatible organisms are more likely to be successful colonizers after long-distance dispersal than self-incompatible organisms. This simple prediction draws a link between mating-system evolution and diverse fields of ecology and evolution such as dispersal biology and colonization, the evolution of range size and range limits, demography and Allee effect, and invasion biology. However, after >60 years of experimental research and theory development, the accumulated data yield varying, and often contradictory, support of BL. Our working group brings together a diverse array of researchers to assess predictions and assumptions of BL and elucidate ecological, evolutionary, and demographic parameters likely to determine the relationships between mating system, dispersal, and colonization success. To accomplish these goals we will: 1) Compile the voluminous literature on BL. 2) Link the BL data with two extensive databases gathered by prior NESCent support (seed germination and seed traits data; mating system data) and a NCEAS pollen limitation database. These expanded databases will include dispersal, range size, and life-history traits, thereby creating a powerful tool for testing various aspects of the relationship between mating-system and colonization success. 3) Employ macroevolutionary tools to map mating-system and dispersal traits onto the angiosperm phylogeny to assess evolutionary patterns and phylogenetically-corrected trait correlations. 4) Formalize BL using current population genetic theory and dispersal theory. Synthetic products of our working group should elucidate the links between dispersal and mating-system in colonization success, and will influence multiple fields of research in evolution for the foreseeable future.

May 10, 2015

Building non-model species genome curation communities

May 6, 2015

Primates are highly charismatic and often serve as flagship species in conservation efforts. They are also the closest living relatives of humans, and therefore hold the keys to resolving many questions about human evolution and ecology. However, the slow life histories of primates, combined with their complex social systems, their behavioral plasticity, and the challenging field conditions in which primate researchers must work, have severely limited analyses of mortality and fertility in wild, unprovisioned primate populations. This in turn limits comparative analyses that can shed light on the population dynamics and the social and ecological adaptations that have shaped both human and nonhuman primate evolution. We propose a Primate Life Histories Working Group to compare mortality and fertility schedules across taxa, to evaluate a set of hypotheses about the roles that phylogeny, ecology, and behavior play in shaping primate mortality and fertility patterns, and to examine whether life history theory predicts which vital rates are most variable across species. Using unique, individual-based life history data that have been collected from wild populations by nine working group participants over a minimum of 19 years, we will develop age-specific mortality and fertility schedules and create population projection matrices for each species. Our immediate goals are to test current hypotheses about the evolution of life histories in order to advance our understanding of primate evolution. Our longer-term goal is to move toward a collaborative, shared databank allowing analyses of irreplaceable life history data on wild primates.

May 3, 2015

April 28, 2015

A number of independent efforts have compiled global plant databases on functionally important traits of leaves, stems, seeds, and flowers. These databases are comprised of 1000's to tens of 1000's of species. With a few notable exceptions, they have not been analyzed in an evolutionary or phylogenetic context. However, when synthesized with a modern molecular phylogeny, these data could tell a comprehensive, multivariate story of the evolution of plant functional diversity. In this working group, we will merge multiple databases to explore the rate (tempo, sensu GG Simpson) of evolution of these traits and the best fit evolutionary model(s) (mode) underlying the trait diversification of land plants. We will ask 1. whether important divergences in trait space occurred along similar branches for different traits, 2. whether there were periods of evolution when trait diversification was especially rapid, and 3. whether there were interactions between trait evolution and rates of speciation and extinction. This work will lead to a new community resource of great interest—an internally synced trait matrix—matched with the current state-of-the-art phylogeny. These data can then be synthesized with fossil evidence to explore whether the tempo and mode of trait evolution in extant and extinct taxa provide similar stories. Furthermore, these data will provide a powerful view into the coordinated (or lack thereof) evolution of ecologically important traits across vascular plants—one of the most diverse and important lineages in the world today.

April 23, 2015

The identification and explanation of long-term evolutionary trends in higher taxa and biological communities is an important goal of biological research. Body size is the single most important ecological characteristic of metazoa and the variable most easily applied to analysis of evolutionary trends across distantly related taxa. The proposed working group will bring together paleobiologists studying body size evolution in deep time and across higher taxa with biologists studying the distribution of body sizes in living organisms from the community to global scale. The working group will initiate a community-wide database of body sizes through the Phanerozoic, an effort that requires standardized data on body size across higher taxa. The working group will also catalyze collaborations between paleobiologists and biologists to develop the theory necessary to investigate long-term dynamics in body-size evolution across diverse living and extinct metazoan lineages. The workshop will provide a venue for members to address the relationships between the pattern of body size evolution and the distribution of body sizes in extant organisms. How well can macroevolutionary patterns be inferred from macroecological ones? How well do those patterns reflect evolutionary mechanisms, whether driven or passive? Ultimately, the resulting database will become a broadly applicable and dynamic resource for macroevolutionary research, with real potential to help future workers shed light on the forces that have shaped the evolutionary trajectory of animal life on Earth.