news aggregator

July 18, 2015

19:52

@mathmomike wrote:

Phylomania - November - Hobart, Tasmania, Australia http://www.maths.utas.edu.au/phylomania/phylomania2015.htm and then the 20th annual NZ phylo meeting - February, Tongariro National Park, NZ http://www.math.canterbury.ac.nz/bio/events/doom16/

Posts: 1

Participants: 1

Read full topic

July 17, 2015

06:25

Eukaryotes were born of a chimeric union between two prokaryotes—the progenitors of the mitochondrial and nuclear genomes. Early in eukaryote evolution, most mitochondrial genes were lost or transferred to the nucleus, but a core set of genes that code exclusively for products associated with the electron transport system remained in the mitochondrion. The products of these mitochondrial genes work in intimate association with the products of nuclear genes to enable oxidative phosphorylation and core energy production. The need for coadaptation, the challenge of cotransmission, and the possibility of genomic conflict between mitochondrial and nuclear genes have profound consequences for the ecology and evolution of eukaryotic life. An emerging interdisciplinary field that I call "mitonuclear ecology" is reassessing core concepts in evolutionary ecology including sexual reproduction, two sexes, sexual selection, adaptation, and speciation in light of the interactions of mitochondrial and nuclear genomes.

06:25

The cnidarian freshwater polyp Hydra sp. exhibits an unparalleled regeneration capacity in the animal kingdom. Using an integrative transcriptomic and stable isotope labeling by amino acids in cell culture proteomic/phosphoproteomic approach, we studied stem cell-based regeneration in Hydra polyps. As major contributors to head regeneration, we identified diverse signaling pathways adopted for the regeneration response as well as enriched novel genes. Our global analysis reveals two distinct molecular cascades: an early injury response and a subsequent, signaling driven patterning of the regenerating tissue. A key factor of the initial injury response is a general stabilization of proteins and a net upregulation of transcripts, which is followed by a subsequent activation cascade of signaling molecules including Wnts and transforming growth factor (TGF) beta-related factors. We observed moderate overlap between the factors contributing to proteomic and transcriptomic responses suggesting a decoupled regulation between the transcriptional and translational levels. Our data also indicate that interstitial stem cells and their derivatives (e.g., neurons) have no major role in Hydra head regeneration. Remarkably, we found an enrichment of evolutionarily more recent genes in the early regeneration response, whereas conserved genes are more enriched in the late phase. In addition, genes specific to the early injury response were enriched in transposon insertions. Genetic dynamicity and taxon-specific factors might therefore play a hitherto underestimated role in Hydra regeneration.

06:25

Rates of molecular evolution can vary over time. Diverse statistical techniques for divergence time estimation have been developed to accommodate this variation. These typically require that all sequence (or codon) positions at a locus change independently of one another. They also generally assume that the rates of different types of nucleotide substitutions vary across a phylogeny in the same way. This permits divergence time estimation procedures to employ an instantaneous rate matrix with relative rates that do not differ among branches. However, previous studies have suggested that some substitution types (e.g., CpG to TpG changes in mammals) are more clock-like than others. As has been previously noted, this is biologically plausible given the mutational mechanism of CpG to TpG changes. Through stochastic mapping of sequence histories from context-independent substitution models, our approach allows for context-dependent nucleotide substitutions to change their relative rates over time. We apply our approach to the analysis of a 0.15 Mb intergenic region from eight primates. In accord with previous findings, we find comparatively little rate variation over time for CpG to TpG substitutions but we find more for other substitution types. We conclude by discussing the limitations and prospects of our approach.

06:25

At high-altitude, small mammals are faced with the energetic challenge of sustaining thermogenesis and aerobic exercise in spite of the reduced O2 availability. Under conditions of hypoxic cold stress, metabolic demands of shivering thermogenesis and locomotion may require enhancements in the oxidative capacity and O2 diffusion capacity of skeletal muscle to compensate for the diminished tissue O2 supply. We used common-garden experiments involving highland and lowland deer mice (Peromyscus maniculatus) to investigate the transcriptional underpinnings of genetically based population differences and plasticity in muscle phenotype. We tested highland and lowland mice that were sampled in their native environments as well as lab-raised F1 progeny of wild-caught mice. Experiments revealed that highland natives had consistently greater oxidative fiber density and capillarity in the gastrocnemius muscle. RNA sequencing analyses revealed population differences in transcript abundance for 68 genes that clustered into two discrete transcriptional modules, and a large suite of transcripts (589 genes) with plastic expression patterns that clustered into five modules. The expression of two transcriptional modules was correlated with the oxidative phenotype and capillarity of the muscle, and these phenotype-associated modules were enriched for genes involved in energy metabolism, muscle plasticity, vascular development, and cell stress response. Although most of the individual transcripts that were differentially expressed between populations were negatively correlated with muscle phenotype, several genes involved in energy metabolism (e.g., Ckmt1, Ehhadh, Acaa1a) and angiogenesis (Notch4) were more highly expressed in highlanders, and the regulators of mitochondrial biogenesis, PGC-1α (Ppargc1a) and mitochondrial transcription factor A (Tfam), were positively correlated with muscle oxidative phenotype. These results suggest that evolved population differences in the oxidative capacity and capillarity of skeletal muscle involved expression changes in a small suite of coregulated genes.

06:25

Sodalis glossinidius, a maternally inherited secondary symbiont of the tsetse fly, is a bacterium in the early/intermediate state of the transition toward symbiosis, representing an important model for investigating establishment and evolution of insect–bacteria symbiosis. The absence of phylogenetic congruence in tsetse-Sodalis coevolution and the existence of Sodalis genotypic diversity in field flies are suggestive for a horizontal transmission route. However, to date no natural mechanism for the horizontal transfer of this symbiont has been identified. Using novel methodologies for the stable fluorescent-labeling and introduction of modified Sodalis in tsetse flies, we unambiguously show that male-borne Sodalis is 1) horizontally transferred to females during mating and 2) subsequently vertically transmitted to the progeny, that is, paternal transmission. This mixed mode of transmission has major consequences regarding Sodalis’ genome evolution as it can lead to coinfections creating opportunities for lateral gene transfer which in turn could affect the interaction with the tsetse host.

06:25

Sex chromosomes are subject to unique evolutionary forces that cause suppression of recombination, leading to sequence degeneration and the formation of heteromorphic chromosome pairs (i.e., XY or ZW). Although progress has been made in characterizing the outcomes of these evolutionary processes on vertebrate sex chromosomes, it is still unclear how recombination suppression and sequence divergence typically occur and how gene dosage imbalances are resolved in the heterogametic sex. The threespine stickleback fish (Gasterosteus aculeatus) is a powerful model system to explore vertebrate sex chromosome evolution, as it possesses an XY sex chromosome pair at relatively early stages of differentiation. Using a combination of whole-genome and transcriptome sequencing, we characterized sequence evolution and gene expression across the sex chromosomes. We uncovered two distinct evolutionary strata that correspond with known structural rearrangements on the Y chromosome. In the oldest stratum, only a handful of genes remain, and these genes are under strong purifying selection. By comparing sex-linked gene expression with expression of autosomal orthologs in an outgroup, we show that dosage compensation has not evolved in threespine sticklebacks through upregulation of the X chromosome in males. Instead, in the oldest stratum, the genes that still possess a Y chromosome allele are enriched for genes predicted to be dosage sensitive in mammals and yeast. Our results suggest that dosage imbalances may have been avoided at haploinsufficient genes by retaining function of the Y chromosome allele through strong purifying selection.

06:25

LBD (LATERAL ORGAN BOUNDARIES DOMAIN) genes are essential to the developmental programs of many fundamental plant organs and function in some of the basic metabolic pathways of plants. However, our historical perspective on the roles of LBD genes during plant evolution has, heretofore, been fragmentary. Here, we show that the LBD gene family underwent an initial radiation that established five gene lineages in the ancestral genome of most charophyte algae and land plants. By inference, the LBD gene family originated after the emergence of the green plants (Viridiplantae), but prior to the diversification of most extant streptophytes. After this initial radiation, we find limited instances of gene family diversification in land plants until successive rounds of expansion in the ancestors of seed plants and flowering plants. The most dynamic phases of LBD gene evolution, therefore, trace to the aquatic ancestors of embryophytes followed by relatively recent lineage-specific expansions on land.

06:25

Many phylogenomic studies based on transcriptomes have been limited to "single-copy" genes due to methodological challenges in homology and orthology inferences. Only a relatively small number of studies have explored analyses beyond reconstructing species relationships. We sampled 69 transcriptomes in the hyperdiverse plant clade Caryophyllales and 27 outgroups from annotated genomes across eudicots. Using a combined similarity- and phylogenetic tree-based approach, we recovered 10,960 homolog groups, where each was represented by at least eight ingroup taxa. By decomposing these homolog trees, and taking gene duplications into account, we obtained 17,273 ortholog groups, where each was represented by at least ten ingroup taxa. We reconstructed the species phylogeny using a 1,122-gene data set with a gene occupancy of 92.1%. From the homolog trees, we found that both synonymous and nonsynonymous substitution rates in herbaceous lineages are up to three times as fast as in their woody relatives. This is the first time such a pattern has been shown across thousands of nuclear genes with dense taxon sampling. We also pinpointed regions of the Caryophyllales tree that were characterized by relatively high frequencies of gene duplication, including three previously unrecognized whole-genome duplications. By further combining information from homolog tree topology and synonymous distance between paralog pairs, phylogenetic locations for 13 putative genome duplication events were identified. Genes that experienced the greatest gene family expansion were concentrated among those involved in signal transduction and oxidoreduction, including a cytochrome P450 gene that encodes a key enzyme in the betalain synthesis pathway. Our approach demonstrates a new approach for functional phylogenomic analysis in nonmodel species that is based on homolog groups in addition to inferred ortholog groups.

06:25

Citrus genus includes some of the most important cultivated fruit trees worldwide. Despite being extensively studied because of its commercial relevance, the origin of cultivated citrus species and the history of its domestication still remain an open question. Here, we present a phylogenetic analysis of the chloroplast genomes of 34 citrus genotypes which constitutes the most comprehensive and detailed study to date on the evolution and variability of the genus Citrus. A statistical model was used to estimate divergence times between the major citrus groups. Additionally, a complete map of the variability across the genome of different citrus species was produced, including single nucleotide variants, heteroplasmic positions, indels (insertions and deletions), and large structural variants. The distribution of all these variants provided further independent support to the phylogeny obtained. An unexpected finding was the high level of heteroplasmy found in several of the analyzed genomes. The use of the complete chloroplast DNA not only paves the way for a better understanding of the phylogenetic relationships within the Citrus genus but also provides original insights into other elusive evolutionary processes, such as chloroplast inheritance, heteroplasmy, and gene selection.

06:25

Knowledge of which genes and pathways are affected by inbreeding may help understanding the genetic basis of inbreeding depression, the potential for purging (selection against deleterious recessive alleles), and the transition from outcrossing to selfing. Arabidopsis lyrata is a predominantly self-incompatible perennial plant, closely related to the selfing model species A. thaliana. To examine how inbreeding affects gene expression, we compared the transcriptome of experimentally selfed and outcrossed A. lyrata originating from two Scandinavian populations that express similar inbreeding depression for fitness ( 0.80). The number of genes significantly differentially expressed between selfed and outcrossed individuals were 2.5 times higher in the Norwegian population (500 genes) than in the Swedish population (200 genes). In both populations, a majority of genes were upregulated on selfing (80%). Functional annotation analysis of the differentially expressed genes showed that selfed offspring were characterized by 1) upregulation of stress-related genes in both populations and 2) upregulation of photosynthesis-related genes in Sweden but downregulation in Norway. Moreover, we found that reproduction- and pollination-related genes were affected by inbreeding only in Norway. We conclude that inbreeding causes both general and population-specific effects. The observed common effects suggest that inbreeding generally upregulates rather than downregulates gene expression and affects genes associated with stress response and general metabolic activity. Population differences in the number of affected genes and in effects on the expression of photosynthesis-related genes show that the genetic basis of inbreeding depression can differ between populations with very similar levels of inbreeding depression.

06:25

Several hypotheses have been proposed regarding the origin and evolution of the secretin family of peptides and receptors. However, identification of homologous ligand–receptor pairs in invertebrates and vertebrates is difficult because of the low levels of sequence identity between orthologs of distant species. In this study, five receptors structurally related to the vertebrate class B1 G protein-coupled receptor (GPCR) family were characterized from amphioxus (Branchiostoma floridae). Phylogenetic analysis showed that they clustered with vertebrate parathyroid hormone receptors (PTHR) and pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon receptors. These PTHR-like receptors shared synteny with several PTH and PACAP/glucagon receptors identified in spotted gar, Xenopus, and human, indicating that amphioxus preserves the ancestral chordate genomic organization of these receptor subfamilies. According to recent data by Mirabeau and Joly, amphioxus also expresses putative peptide ligands including homologs of PTH (bfPTH1 and 2) and PACAP/GLUC-like peptides (bfPACAP/GLUCs) that may interact with these receptors. Functional analyses showed that bfPTH1 and bfPTH2 activated one of the amphioxus receptors (bf98C) whereas bfPACAP/GLUCs strongly interacted with bf95. In summary, our data confirm the presence of PTH and PACAP/GLUC ligand–receptor pairs in amphioxus, demonstrating that functional homologs of vertebrate PTH and PACAP/glucagon GPCR subfamilies arose before the cephalochordate divergence from the ancestor of tunicates and vertebrates.

06:25

The majority of human group A rotaviruses possess the P[8] VP4 genotype. Recently, a genetically distinct subtype of the P[8] genotype, also known as OP354-like P[8] or lineage P[8]-4, emerged in several countries. However, it is unclear for how long the OP354-like P[8] gene has been circulating in humans and how it has spread. In a global collaborative effort 98 (near-)complete OP354-like P[8] VP4 sequences were obtained and used for phylogeographic analysis to determine the viral migration patterns. During the sampling period, 1988–2012, we found that South and East Asia acted as a source from which strains with the OP354-like P[8] gene were seeded to Africa, Europe, and North America. The time to the most recent common ancestor (TMRCA) of all OP354-like P[8] genes was estimated at 1987. However, most OP354-like P[8] strains were found in three main clusters with TMRCAs estimated between 1996 and 2001. The VP7 gene segment of OP354-like P[8] strains showed evidence of frequent reassortment, even in localized epidemics, suggesting that OP354-like P[8] genes behave in a similar manner on the evolutionary level as other P[8] subtypes. The results of this study suggest that OP354-like P[8] strains have been able to disperse globally in a relatively short time period. This, in combination with a relatively large genetic distance to other P[8] subtypes, might result in a lower vaccine effectiveness, underscoring the need for a continued surveillance of OP354-like P[8] strains, especially in countries where rotavirus vaccination programs are in place.

06:25

Human adenoviruses (HAdV; species HAdV-A to -G) are highly prevalent in the human population, and represent an important cause of morbidity and, to a lesser extent, mortality. Recent studies have identified close relatives of these viruses in African great apes, suggesting that some HAdV may be of zoonotic origin. We analyzed more than 800 fecal samples from wild African great apes and humans to further investigate the evolutionary history and zoonotic potential of hominine HAdV. HAdV-B and -E were frequently detected in wild gorillas (55%) and chimpanzees (25%), respectively. Bayesian ancestral host reconstruction under discrete diffusion models supported a gorilla and chimpanzee origin for these viral species. Host switches were relatively rare along HAdV evolution, with about ten events recorded in 4.5 My. Despite presumably rare direct contact between sympatric populations of the two species, transmission events from gorillas to chimpanzees were observed, suggesting that habitat and dietary overlap may lead to fecal-oral cross-hominine transmission of HAdV. Finally, we determined that two independent HAdV-B transmission events to humans occurred more than 100,000 years ago. We conclude that HAdV-B circulating in humans are of zoonotic origin and have probably affected global human health for most of our species lifetime.

06:25

Convergent and parallel amino acid substitutions in protein evolution, collectively referred to as molecular convergence here, have small probabilities under neutral evolution. For this reason, molecular convergence is commonly viewed as evidence for similar adaptations of different species. The surge in the number of reports of molecular convergence in the last decade raises the intriguing question of whether molecular convergence occurs substantially more frequently than expected under neutral evolution. We here address this question using all one-to-one orthologous proteins encoded by the genomes of 12 fruit fly species and those encoded by 17 mammals. We found that the expected amount of molecular convergence varies greatly depending on the specific neutral substitution model assumed at each amino acid site and that the observed amount of molecular convergence is explainable by neutral models incorporating site-specific information of acceptable amino acids. Interestingly, the total number of convergent and parallel substitutions between two lineages, relative to the neutral expectation, decreases with the genetic distance between the two lineages, regardless of the model used in computing the neutral expectation. We hypothesize that this trend results from differences in the amino acids acceptable at a given site among different clades of a phylogeny, due to prevalent epistasis, and provide simulation as well as empirical evidence for this hypothesis. Together, our study finds no genomic evidence for higher-than-neutral levels of molecular convergence, but suggests the presence of abundant epistasis that decreases the likelihood of molecular convergence between distantly related lineages.

06:25

Medicago truncatula is a model legume species used to investigate plant–microorganism interactions, notably root symbioses. Massive population genomic and transcriptomic data now available for this species open the way for a comprehensive investigation of genomic variations associated with adaptation of M. truncatula to its environment. Here we performed a fine-scale genome scan of selective sweep signatures in M. truncatula using more than 15 million single nucleotide polymorphisms identified on 283 accessions from two populations (Circum and Far West), and exploited annotation and published transcriptomic data to identify biological processes associated with molecular adaptation. We identified 58 swept genomic regions with a 15 kb average length and comprising 3.3 gene models on average. The unimodal sweep state probability distribution in these regions enabled us to focus on the best single candidate gene per region. We detected two unambiguous species-wide selective sweeps, one of which appears to underlie morphological adaptation. Population genomic analyses of the remaining 56 sweep signatures indicate that sweeps identified in the Far West population are less population-specific and probably more ancient than those identified in the Circum population. Functional annotation revealed a predominance of immunity-related adaptations in the Circum population. Transcriptomic data from accessions of the Far West population allowed inference of four clusters of coregulated genes putatively involved in the adaptive control of symbiotic carbon flow and nodule senescence, as well as in other root adaptations upon infection with soil microorganisms. We demonstrate that molecular adaptations in M. truncatula were primarily triggered by selective pressures from root-associated microorganisms.